FINITELY ADDITIVE MEASURES
IN THE ERGODIC THEORY
OF MARKOV CHAINS. I'T
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Abstract

We develop a new approach to the study of general Markov chains (MC), i.e.
homogeneous Markov processes with discrete time on an arbitrary phase space.
We extend the Markov operator from the traditional space of countably addi-
tive measures to the space of finitely additive measures. Given an arbitrary
phase space, we construct its "gamma-compactification" to which we extend
each Markov chain. We establish an isomorphism between the finitely additive
Markov chains on the given space and the Feller chains on its "gamma-compacti-
fication." The study is carried out in the framework of the functional operator
approach.
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1. LANGUAGE, TOOLS, AND CONSTRUCTIONS
1. Finitely additive measures

Let X be an arbitrary set and let X be an algebra of its subsets. Denote by o(X)
the o-algebra generated by 3, often assuming X itself to be a o-algebra. If X is a
topological space with topology 7 = 7x then A = Ax = A, and B = Bx = B, are
the Borel algebra and o-algebra on X generated by 7. Throughout the article, we
assume X to contain all singletons of X. We also assume that our topological space
X is minimally Tj-separated, i.e., we suppose that all its singletons are closed. In
this case, its Borel algebra A and o-algebra B contain all singletons. All Hausdorff,
regular, normal, and metric spaces are T}-separated.
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2 A. I Zhdanok

Following the notations of [9], denote by ba(X,Y) the Banach space of all
bounded finitely additive measures p: ¥ — R with norm the total variation
of a measure on X (||u|| = Var(p, X)) and by ca(X,X), the Banach space of
all bounded countably additive measures p: ¥ — R also with total variation
as the norm. Finitely additive measures are also referred to as charges in
the literature.

Definition 1.1 (see [29]). A nonnegative finitely additive measure p €
ba(X,Y) is called purely finitely additive if, for every countable additive mea-
sure A € ca(X,Y), 0 < A < pimplies A = 0. A measure u € ba(X,Y) is called
purely finitely additive if both nonnegative measures u™ and p~ of its Jordan
decomposition = u™ — p~ are purely finitely additive.

A special case of the following theorem was proven by A.D. Alexandrov in
the first systematic study of finitely additive measures (see [1-3]). A general
assertion was obtained by Yosida and Hewitt in [29].

Theorem 1.1. Each finitely additive measure p € ba(X,Y) is uniquely
representable as p = p1 + p2, where py € ca(X,X) is a countably additive
measure and pz € ba(X,Y) is a purely finitely additive measure.

Note that the zero measure is countably and finitely additive. This is
actually implied in Theorem 1.1 where, possibly, pus = 0.

Like countably additive measures, purely finitely additive measures form
a vector subspace in ba(X,Y) which we denote by pfa(X,X). Theorem 1.1 can
be treated as an assertion on direct decomposition of the measure space:

ba(X,X) = ca(X, X) @ pfa(X, X).

A purely finitely additive measure vanishes on every finite set. The au-
thors of [29] observe with a reference to Birkhoff that, on a countable set,

there exist 2270 = 2¢ pairwise singular purely finitely additive measures (c is
a continuum).

Consider the real line X = R with the Borel g-algebra B. Distinguish two-
valued (1 or 0) purely finitely additive measures in pfa(X, B). Among them,
two types of measures are worth mentioning: the measures “concentrated” on
a bounded segment [a, b] and those “concentrated” arbitrarily far from the zero,
i.e., “near infinity”

Two-valued measures € pfa(X,B) of the first type. Every such mea-
sure 4 has the only point z, € R (depending on u) such that p((z, — e,
zu+¢)) = w(R) =1 for every ¢ > 0 but p({z,}) = 0. We can say that
such p “is concentrated” (or “fixes the full unit mass”) arbitrarily close to
the point z, but not at z,. Such a measure may be entirely “on the tail” of
a sequence x, — x,. Obviously, “near” a fixed point x, there are at least 2¢
different two-valued purely finitely additive measures.
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Finitely Additive Measures in the Ergodic Theory of Markov Chains. 1 3

Two-valued measures 1 € pfa(X,B) of the second type. Each of these
measures satisfies (R \ [-n,n]) = p(R) = 1 for all n € N. They split into

two classes: p1((—o00,—n)) =1 and pa((n,00)) =1 for all n € N. The first
measures are “concentrated near —oo” and the second, “near +oo” As for
the first type, such measures can lie “on the tails” of sequences tending to —oo
or 400 and there are at least 2¢ such measures. A.D. Alexandrov (see [1-3])
calls them “unreal charges”

Purely finitely additive measures that are not two-valued can have a much
more complicated structure. Note that a purely finitely additive measure has
no support in the usual sense.

Given an arbitrary X, denote by B(X) the Banach space of all bounded
functions f: X — R with the sup-norm

1f]l = sup |f(z)].
reX

Suppose that we have an algebra X of subsets of X. Denote by H(X,Y)
the vector space of all finite linear combinations of the characteristic func-
tions x, of sets E € ¥ and by B(X, X), the closure of H(X,X) in B(X), i.e.,
we extend H (X, X)) by adjoining all the uniform limits of sequences in H (X, Y)
thereto. Obviously, B(X,Y) is a Banach space and H(X,Y) C B(X,X) C
B(X). If ¥ is a o-algebra then B(X,Y) is the Banach space of all X-mea-
surable bounded functions. If ¥ is not a o-algebra then not all functions
in B(X,Y) are ¥-measurable.

Recall that the integral with respect to a finitely additive measure, gener-
alizing the Lebesgue integral, was constructed by Fichtenholz and Kantorovich
and, simultaneously, by Hildebrandt in 1934. The most general theory for in-
tegration of unbounded functions with respect to unbounded finitely additive
measures was suggested by Dunford and set forth systematically by Dunford
and Schwartz in [9]. For us, it is enough to be able to integrate bounded func-
tions with respect to bounded measures, which simplifies the problem because
the construction of the usual Lebesgue integral is preserved.

Suppose that ¥ is an algebra. Every f € B(X,Y) is integrable with re-
spect to each p € ba(X,Y) for the algebra ¥ (i.e., nonmeasurable functions
are integrable too) and the o-algebra ¥. The general properties of the integral
[ fdp are the same as those of the Lebesgue integral with respect to a count-
ably additive measure. However, the case of a purely finitely additive u has
some specific features. For example, the analog to the Fubini Theorem for
a double integral with respect to a purely finitely additive measure does not
hold even if ¥ is a g-algebra. Denote the integral of a function f with respect
to a measure p on X by

/ F(w)dpx) = / Fdu = (o) = s £ = F () = ulf).
X
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4 A. I Zhdanok

In this article, we use the Banach space C'(X) of all bounded continuous
functions on a topological space (X, 7). Clearly, C(X) C B(X,.A) C B(X, B).
Moreover, every f € C'(X) is integrable with respect to all u € ba(X, B) and
p € ba(X,A).

Let X be an arbitrary topological space with topology 7 and let ¥ be
an algebra of its subsets (not necessarily connected with 7). We now recall
some conventional definitions and known facts and comment on them.

Definition 1.2. A set E € X is regular for a measure A € ba(X, X) if, for
every £ > 0, there exist F, G € ¥ such that F C E C G and Var(u, G\ F) < ¢

(here F is the closure of F' and G is the interior of ). Denote by R the class
of all regular sets for \. A measure \ € ba(X,Y) is called reqular if each E € ¥
is regular, i.e., Ry = X.

We use the standard notations: rba(X,Y) is the Banach space of all regu-
lar finitely additive bounded measures on (X, Y) with norm the total variation
of a measure; rca(X,X) is the Banach space of all regular countably addi-
tive bounded measures on (X, Y) with norm the total variation of a measure.
We have the inclusions

rea(X,Y) C rba(X,X) C ba(X, X);
rea(X,Y) C ca(X,X) C ba(X, ).

It is known (see [9]) that, in a metric space X, if ¥ = B then every count-
ably additive measure is regular, i.e., ca(X,B) = rca(X, B) for a metric X.
However, some X admit nonregular countably additive measures, and some
nonmetrizable X also satisfy ca(X, B) = rca(X, B).

The finite additivity of p does not imply its regularity even on [0, 1].
There is a classical theorem by A.D. Alexandrov (see [1]) stating that if X is
compact and a bounded finitely additive measure p on (X, B) is regular then g
is countably additive. Combining this with Hahn’s extension theorem makes it
possible to obtain a more general result which we will often use in the sequel.

Theorem 1.2 [9]. Suppose that X is compact, ¥ is an algebra, and p €
rba(X, ). Then p has a unique bounded regular countably additive extension
to the o-algebra o(X), i.e., we may assume that rba(X,%) = rca(X,o(2)).
In particular, if X is compact then rba(X, A) = rca(X, B).

Thus, if a nonzero purely finitely additive measure can be “localized” on
a compact space then this measure is not regular. In particular, a measure
1> 0on (R, B) with p((0,£)) =1 for all £ > 0 is not regular.

If X is a topological space then, in many problems, the original mea-
sure A € ba(X,¥) can be replaced by a regular measure A “stuck” to it in
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Finitely Additive Measures in the Ergodic Theory of Markov Chains. 1 5t

the topology 7¢ generated by C'(X) in ba(X, ). Such a procedure was stud-
ied in detail by the author in [33,34]. In this connection, we now recall some
facts that are necessary for the exposition.

Theorem 1.3 [33]. Suppose that X is normal. Then, for every \ €
ba(X, A), there exists a unique X € rba(X,.A) such that [ fd\ = [ fdX for
every f € C(X). Moreover, \(X) = M(X); if A > 0 then X > 0; if A € ca(X, B)
then X € rca(X, B) (as the extension of X € rca(X, A) to B).

Definition 1.3 [33]. Given A € ba(X,.A), we call the measure \ €
rba(X, A) corresponding to A by Theorem 1.3 the regularization of .

Corollary 1.1. If X is a Hausdorff compact space then, for every \ €
ba(X, A), its regularization X belongs to rca(X, B).

Definition 1.4 [33]. Assume that p € rba(X,.A) and g > 0. The set
R{u} = {X € ba(X, A) : X > 0, X = p} is called the class of C-equivalent
measures for f.

Theorem 1.4 [33]. Let u € rba(X, A). The set R{u} is convex and com-
pact in the Tp-topology of ba(X, B) (TB is the *-weak topology on ba(X, B))

It should be noted that, as a matter of fact, this natural pair of mea-
sures (A, \) was used by many other authors as an intermediate technical tool
(without studying the interrelation between A and X in detail).

Recall that there is a duality between the vector spaces of functions
and measures (see [9]): B*(X,¥) = ba(X,Y) for an arbitrary (X,¥) and
C*(X) = rba(X, A) for anormal topological X, C*(X) = rca(X, B) for a Haus-
dorff compact space X, with equality signifying isometric isomorphisms and
the spaces on the left-hand sides presenting the topological duals to the corre-
sponding function spaces.

We will consider the four “natural” topologies on the vector spaces M of
measures:

T 18 the strong (metric) topology on M;
Ta+ is the weak topology on M generated by the dual M*;
7p is the weak topology on M generated by B(X,X) (i.e., the *-weak
topology for M = ba(X, E));
7o is the weak topology on M generated by C'(X) for X a topological
space.

These topologies are comparable for a fixed M: 7¢ < 78 < T+ < Tur-
All topologies 137+, T, and 7¢ are defined by a base for the Tychonoff topology
with a neighborhood base of a point y € M of the form

V(u,e;gl...,fn):{nel\/[:‘&(,u—n)‘ <egi1=1,2,...,n;n €N, 6>0}.
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6 A. I Zhdanok

Here &i,...,&, are linear functionals on the corresponding space M*,
B(X,X), or C(X). In the last two spaces, &; is an arbitrary function f € B(X, X))
or f € C(X) regarded as a linear functional on ba(X,X) of the form f(u) =
(f,m) = [ fdp.

Below, we also use the notations Syy = {p € M : p > 0, p(X) = 1}.
Thus, S¢, is the set of all traditional (countably additive) probability measures
on (X,Y).

2. Banach limits of sequences of measures

The construction of a Banach limit was already used by A.D. Alexandrov
in his study of set functions (see [2,3]). This is quite natural because measures
define linear functionals on the corresponding function spaces, while Banach
limits were suggested by Banach as a rather general example of extension of
linear functionals from a subspace to an entire space. Afterwards Banach limits
were repeatedly applied to measure theory.

We observe that the idea of a Banach limit can be treated in different ways,
which can be seen from the papers of various authors. For our purposes, we
need to develop our own version that was published partly in [34]. Therefore,
in what follows, we have to indicate some key points of this preprint (for
the proofs the reader is referred to [34]).

Let /, be the space of all bounded numeric sequences with the sup-norm
and let ¢ be the space of all convergent sequences with the sup-norm. Clearly,
¢ Clx.

Definition 2.1. A linear functional ¢ € ¢* is called the functional of
the limit of a sequence if the relation (o) = li_)rn oy, holds for every a =
n—oo

(a1, q,...) € c. We denote this functional on ¢ by £ = Lim € ¢*, Lim(a) =
Lim(ay,) = lim «,.
n—o0

Every continuous extension of Lim from ¢ to /o, preserving the unit norm
(generally speaking, such an extension is not unique) is called a Banach limit
functional on , and denoted by LIM; the class of all Banach limit functionals
on /y, is denoted by L. For specific & = (a1,a9,...) € £y and LIM € L, we
call LIM(«) the Banach limit (corresponding to the functional LIM) of «.

Under relevant conditions, we sometimes call a concrete functional LIM
itself a Banach limit. Curiously, the functional £ such that &(a) = %(h_m an +
lim av,) for all @ € {4 is not a Banach limit.

Definition 2.2. Suppose that (X,Y) is arbitrary and p, € ba(X,X) is
such that ||up|| < M < oo, n=1,2,.... We call each measure u € ba(X,Y)
meeting the inequalities lim i, (E) < u(E) < lim pi,,(E) for all E € 3 a Banach
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Finitely Additive Measures in the Ergodic Theory of Markov Chains. 1 7

limit of the sequence of measures {j,} and denote it by LIM(uy). Denote
by L{pn} the set of all Banach limits of a sequence {1}

This definition is natural due to the fact that, as demonstrated in [34],
all above-mentioned measures p are obtained as Banach limits of the numeric
sequences {1, (E)}, E € X

Theorem 2.1. Let puy € ba(X,X), n=1,2,.... Forall E € ¥ and r €
[lim 11, (E), lim 1, (E)], there exists pn € L{p,} such that u(E) = r.

If all p,’s are countably additive and p € L{u,} then p need not be
countably additive.

Definition 2.3. Measures pg, g € ba(X,X) are said to be singular if
there exists a set £ € ¥ with Var(ui, F) = 0 and Var(u2, X \ E) = 0.

A set H C ba(X,Y) is called a set of pairwise singular measures or just
a singular set if every pair of measures in H are singular. A set H C ba(X,Y)

is called a set of jointly singular measures if, for every measure p € H, there
exists a set £ € X such that Var(u, ) = 0 and Var(n,X \ E) = 0 for

alln e H\ {u}.

If H is countable and consists of countably additive measures then pair-
wise singularity is equivalent to joint singularity. This fails in general.

Theorem 2.2. Suppose that some measures pi, € ba(X,%), |||l <
M < oo, n=1,2,..., are jointly singular. Then each measure y € L{p,} is
purely finitely additive.

Theorem 2.2, together with the previous remarks, implies the following

Theorem 2.2'. Assume that p, € ca(X,X) with ||u,]| < M < oo,
n =1,2,..., are pairwise singular. Then each measure u € L{uy} is purely
finitely additive.

Theorem 2.3. Let u, € ba(X,%), n =1,2,..., and yu, — p in any of
the topologies Tpa, Tpex, or Tp. Then p € L{uy} = {u}.

Theorem 2.4. Let X be a normal topological space, j, € rba(X,A),
pn > 0, n=1,2,..., and p, — p € rba(X,A) in the T¢-topology. Then
L{pn} € R{u}, where R{u} is the class of C'-equivalent measures for p.

Theorem 2.5. Under the conditions of Theorem 2.4, we have p, — A

in the T¢-topology for each A € L{u,}; moreover, there exists a base [ of
the topology of X such that p,(E) — A(E) = u(E) for all E € p.

Corollary 2.1. Under the conditions of Theorem 2.4, the class of mea-
sures L{un} can contain only one countably additive measure, namely, p.

Corollary 2.2. Assume that X and X are infinite and an arbitrary
sequence {pn} of measures has no lim puy,(F) for some E € Y. Then L{uy}
has cardinality at least 2€.
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8 A. I Zhdanok

Theorem 2.6. Assume that (X,X) is arbitrary and pu, € ba(X,Y),
lpn|| < M < 00, n=1,2,.... The set of all Banach limits L{j,} is convex
and compact in the Tg-topology.

Let {pn} be a uniformly bounded sequence of measures in ba(X,X). De-
note by M{ 1y} the set of all limit points of {y,} in the 7p-topology.

Theorem 2.7. Assume that (X,X) is arbitrary and pu, € ba(X,),
lunl] < M < oo, n = 1,2,.... Then M{pun} C L{un}, ie., all Tp-limit
measures of i, are Banach limits.

Let X be a normal topological space and let {,} be a uniformly bounded
sequence of measures in rba(X, .A). Denote by M{p,, } the set of all limit points
of {in} in the To-topology.

Theorem 2.8. Suppose that X is a normal space and p, € rba(X, A),
lnl] < M < oo, n =1,2,.... Then L{u,} C M{un}, i.e., all the Banach
limits of {yy,} are its 7¢-limit measures.

Generally speaking,
M i} # L{pn} # N{pn}.

If a measure y is 7p- or 7¢-limit for {p,} then a subsequence p,, 7p- or
To-converging to i does not necessarily exist.

Theorem 2.9. Assume that u, € rba(X, A), u, >0, n=1,2,..., and
a measure [i is To-limit for {p,} in rba(X, A), i.e., u € M{pn}. Then

p(F) > lim pi,(F)  for all F = F;

(@) < Tm pn(G)  for all G = G.

2. EXTENSION OF MARKOV OPERATORS TO
THE SPACE OF FINITELY ADDITIVE MEASURES

3. Dual pairs of Markov operators

Let X be an arbitrary set and let 3 be a o-algebra of its subsets which
contains all singletons.

Definition 3.1. A transition function (transition probability) p(x, E) on
a measure space (X,Y) is a mapping p: X x ¥ — [0, 1] satisfying the conven-
tional conditions

p(',E)EB(X,E), EGE,
p(z,+) € ca(X,Y), z€X;
p(r, X) =1, r e X.
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Finitely Additive Measures in the Ergodic Theory of Markov Chains. 1 9

A transition function defines a homogeneous Markov chain with discrete
time (MC) on (X, ). Sometimes, we will use more exact terms and call such
a transition function countably additive and the corresponding Markov chain,
a countably additive MC.

Definition 3.2. By the Markov operators, we mean the two operators T'
and A defined explicitly as follows:

T: B(X,X) = B(X,X), (Tf)(z)=Tf(z) ‘ﬁf/){f(y)p(:v,dy),
where f € B(X,Y), z € X
A clX,5) > alX,8), (An)(B) = Au(E) ! [ pla, Eyu(aa),

where p € ca(X,X), E € X.

These operators have been studied quite well. They are bounded linear
operators with ||T'|| = ||A]| = 1. Regarding the space of measures as a space
of linear functionals in a function space, we can state the duality of 7' and A
in a wide sense. Since B*(X,X) # ca(X,X) for infinite X, the operator A is
not adjoint to 7" in the strict sense.

The operator T is positive, i.e., it maps the cone KB of nonnegative
functions B(X,X) into itself. The cone KB is solid, i.e., it has nonempty
interior but, generally speaking, T' does not map the interior of K? into itself.
Possibly, there exist f € KB with ||f|| = 1 such that Tf = 0, i.e., T is not
an isometry on KB, Each Markov operator T has an interior fixed point in K B:
fr)=1>0forallz € X, f€ KB |f|| =1, and Tf = f.

The operator A is also positive, i.e., it maps the cone K°* of nonnegative
measures in ca(X,Y) into itself. The cone K is not solid, i.e., it has empty
interior; and A is an isometry on K i.e., if ;1 > 0 then ||Ap|| = ||| = n(X).
Recall that

Sea ={p€caX,8): p>0, p(X)=1}={pe K: p(X) =1}

is the set of all probability measures. Thus, AS., C S.. Note that A
may fail to have a fixed point in K, ie. in S,. If there exists a fixed
point p = Ap € S then such a measure is called an invariant measure of
the operator A or a stationary distribution of the corresponding MC.

Assume that pg € Seq and p,, = A" g = Apip—1, n = 1,2,.... An MC
can be identified with the sequence of probability measures {11,} = {un(10)}
depending on the initial measure p as a parameter. Therefore, every MC can
be regarded as an iterative process generated by a positive linear operator on
a space of measures. This is the interpretation of an MC we keep to in this
article.
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10 A. I Zhdanok

The dual of B(X,X) is the space of finitely additive measures ba(X,X).
Consequently, the adjoint 7% must be defined on ba(X, ). If we want to ap-
ply the functional methods properly, we should clearly consider the problem
of extending A to ba(X,¥) and thus complete the dual construction of the op-
erators T and A. These arguments are already well known but even now
the articles on MC’s do not give a wide application of the full construction
of T and T™.

The first extensions of the Markov operator A to the space of finitely
additive measures appeared in the articles by Foguel [11] (1962), [12] (1966)
and Sidak [24] (1962). These articles give an example of occasional use of
finitely additive measures as an auxiliary intermediate object. After that
the idea that finitely additive measures are important in probability theory
in general and theory of Markov processes in particular paved a road in these
areas rather slowly. Though going back to the 70’s, it was not until the 90’s
that the term “finitely additive probability” itself took up an appropriate place
in scientific periodicals.

Considering the main problems of Markov chains theory, the author sys-
tematically uses the Markov operator A extended to the space of finitely ad-
ditive measures, i.e., the pair T and T™. These studies were started in the end
of the 70’s; the first results were published by the author in [30,31] in 1981.

Since the following assertion is a folklore, we omit its easy proof.

Theorem 3.1. For every countably additive MC, the Markov opera-
tor A of Definition 3.2 is uniquely extendable from ca(X,Y) to a linear oper-

ator A on ba(X,X), preserving positivity, isometry on the cone, boundedness,
the norm, and explicit form

A: ba(X,3) — ba(X, ),

(A0)(B) % /X p(a, E)uldz), pe ba(X,5), E €.

Moreover, A is topologically adjoint to the operator T of Definition 3.2, i.e.,
T* = A with B*(X,Y) = ba(X, X).

Definition 3.3. We call the extension A of the Markov operator A of
Theorem 3.1 the (finitely additive) extension of A. Like A, we call A a Markov
operator.

Below, we often identify A and A without specifying their domains of
definition.
Suppose that py € ba(X,X) is such that pp > 0 and ||ugl] = po(X) =1,

ie., po € Sp,. Then A generates the sequence of finitely additive measures
fn = App—1 = Anuo € ba(X,%), n = 1,2,.... Following our ideology,
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Finitely Additive Measures in the Ergodic Theory of Markov Chains. 1 11

such an iterative process can be treated as a countably additive MC extended
to the space of finitely additive measures.

Emphasize that we carry out a finitely additive extension of A and MC
itself for a transition probability, which is still countably additive, i.e., we do
not fall outside the limits of the conventional definition of MC.

We will consider “Markov chains (processes)” with finitely additive tran-
sition probability in a separate section of this article.

In defining an MC, we have assumed that ¥ is a o-algebra of subsets
in X, which corresponds to a strong tradition. However, this restriction is not
important. Let ¥ be an algebra of subsets in X. Then, by Hahn’s extension
theorem, each countably additive measure p € ca(X,Y) is uniquely extendable
to a countably additive measure i on o(X). Therefore, we may assume that
ca(X,X) = ca(X,0(X)). With natural clarifications, the Markov chain and its
operators can also be defined in this case.

We now turn to the case of a topological phase space. Let X be topological
space in which every singleton is closed (a T7-separated space). The Borel alge-
bra A and o-algebra B contain all singletons. Consequently, we can also apply
all the above arguments for an MC defined on (X, B) or (X,.4). In the gen-
eral theory, several principal types of MC’s on (X, B) are distinguished with
some extra properties connected with endowing X with a topology. The most
important of these types are the Feller MC’s.

Definition 3.4. An MC defined on (X, B) is called Feller ift TC(X) C
C(X). The Markov operators corresponding to a Feller MC are also called
Feller.

A Feller operator T’ can be regarded at the same time as 7': B(X,B) —
B(X,B) and T: C(X) — C(X). Recall that we have C*(X) = rca(X,.A) for
every normal topological space X. Hence, the initial operator A before and
after its extension to ba(X, B) is not adjoint to the operator 7" on C'(X).

We confine exposition to normal topological spaces on which every count-
ably additive measure is regular, i.e.,

ca(X,B) = rca(X, B).

This is always the case for metric spaces. Then if p € rba(X,.A) and p is
countable additive then p is extendable to B and u € rea(X, B).

The following assertion analogous to Theorem 3.1 is also well known and
easy to prove.

Theorem 3.2. For every countably additive Feller MC, the Markov
operator A of Definition 3.2 is uniquely extendable from ca(X, B) = rca(X, B)

to a linear operator Aon rba(X, A) preserving positivity, isometry on the cone,
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12 A. I Zhdanok

boundedness, the norm, and explicit form

A: rba(X, A) — rba(X, A),

(Ap)(E) = ZM(E) dof /Xp(x, E)u(dx), pe€rba(X,A), E € A.

Moreover, A is topologically adjoint to T: C(X) — C(X), ie., T* = A.
In addition, the operator A of Theorem 3.1 and Definition 3.3 is an extension
of A from rba(X, A) to ba(X, B).

Definition 3.5. We call A the reqular finitely additive extension of
a Feller operator A and, sometimes, identify it with A.

Now, consider the case when X is a Hausdorff compact space. Such a space
is normal and ca(X, B) = rca(X, B) = rba(X,.A). This implies the following
obvious assertion.

Corollary 3.1. Given a Feller MC on a Hausdorff compact space (X, B),
the Markov operator A: rca(X, B) — rca(X, B) of Definition 3.2 coincides with

its regular finitely additive extension A of Definition 3.5. Moreover, A = A is
adjoint to T: C(X) — C(X).

We now touch upon homogeneous Markov processes with continuous time
generated by a transition function p(t,z, E), where x € X, E € X, and
t > 0. They also generate two semigroups of Markov operators T?: B(X,Y) —
B(X,Y) and A': ca(X,¥) — ca(X,X) of the same analytic expression for

every t > 0. Obviously, we can consider the finitely additive extension Zt
to ba(X,Y) in the same manner as earlier for discrete time. Similarly, we
consider the Feller process, in particular, on a compact space. In this article,
we do not go into a special study of Markov processes with continuous time
since their theory essentially differs from that of Markov chains with discrete
time. However, some of the results that we obtain for chains below can be
carried over to processes almost mechanically, which we will note in the relevant
places.

4. Invariant measures of finitely additive extensions
of Markov operators. Basic theorems

In Section 3, we passed from the traditional just “dual” pair of Markov
operators to a pair of topologically adjoint Markov operators. This allows us
to perfectly use the results of the Krein-Rutman theory (see [18]) on the prop-
erties of positive linear operators. Since the operator T: B(X,Y) — B(X,Y)
has an interior fixed point f(z) = 1 in KB, the Krein-Rutman theorem [18,
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Theorem 3.1] implies directly (without extra arguments) that the adjoint op-
erator A has a fixed point in K%, This is a key fact to us.

Theorem 4.1 (Basic Theorem I). For every MC on an arbitrary measure
space (X,Y), there exists an invariant finitely additive measure

A€ ba(X,%), A>0, AMX)=1, \=A)\

ie.,

NE Sp, A(E) = /p(x,E))\(dx), Fex.

This theorem was proven by Sidak (see [24]), who was the first to consider
the extension of the Markov operator to the space of finitely additive measures.
However, the proof in [24] is rather complicated and does not involve positivity
of the Markov operators. The fact that Theorem 4.1 is an easy corollary to
the Krein-Rutman theorem was noticed by the author in [31].

The following assertion was also obtained in [24].

Theorem 4.2. Suppose that we have A\ = AN for an arbitrary MC and
some \ € Sp,. If A\ = A + A9 is the decomposition of A\ into the sum of
a countably additive and purely finitely additive measures then \; = A\ and
Ay = Adg.

Thus, in many cases it suffices to consider only countably additive and
purely finitely additive invariant measures separately.

Now, take a Feller MC. Applying the Krein-Rutman theorem to the oper-

ators T: C'(X) — C(X) and A: rba(X, A) — rba(X, A), as a corollary we have
the following important assertion.

Theorem 4.3 (Basic Theorem II). For every Feller MC defined on a nor-
mal topological space (X, T), there exists an invariant regular finitely additive
measure

A€ rba(X,A), A>0, AMX)=1, = A\,
ie.,

A€ Sppas A(E) = /p(x,E))\(dx), EcA

Explicitly, there is no such result either in [24] or in Foguel’s articles
[11-13,15]. However, it can be obtained by slightly modifying Foguel’s results
and he actually takes it into account. The fact that Theorem 4.3 is an easy
corollary to the Krein-Rutman theorem was observed by the author also in [31].

In [12], Foguel obtained an analogous assertion to Theorem 4.2.
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Theorem 4.4. Assume that a normal X satisfies the equality ca(X, B) =

rea(X, B) and a Feller MC is given on (X, B). If A = AN € Sppg and X = A+ g
is the decomposition of \ into a countably additive measure \1 and a finitely

additive measure Ay then \; = /T)\l and \g = g)\z.
As in the case of the above Basic Theorems, the following assertion is
immediate from the Krein-Rutman theorem.

Theorem 4.5 (Basic Theorem III). For every Feller MC on a Hausdorff
compact space (X,B), there exists an invariant regular countably additive
measure

A€rca(X,B), A>0, MX)=1, A=A\
ie.,

N € Spens A(E) = /p(x,E))\(dx), EeB.

This assertion follows directly from the Basic Theorem II. For a compact
metric space, Theorem 4.5 was first proven by Bebutov in 1948 (see [5]).

For each space of measures we use in this article, denote the set of positive
normalized invariant measures for the Markov operator A by Ay = {pu € Sy :
p = Ap}. For Ap,, we sometimes omit the index: A = Ap,. In particular,
Apta = {1 € A : pis purely finitely additive}. Let My and Mj be two measure
spaces. Introduce the notation

Apr, @ App, = {1 = + aopo - 1 € Ay, 2 € Apgy;
0<ai,a <1, a;+ay = 1};

if Ay, = @ or Ay, = & then we put a; = 0 and o;p; = 0 for the corre-
sponding 7; if Apy;, = Ay, = @ then Ay @ Ay, = . With some liberty,
we can say that Ay, @ Ay, are normalizations of elements of the direct sum
of the sets Ay, and Ajpy,. We can now rewrite the above theorems in a brief
form more convenient for the sequel as follows.

Theorem 4.1. For every MC, A = Ay, # 9.

Theorem 4.2. For every MC, A = Ay, = Acq D Dptq-
Theorem 4.3. For every Feller MC, A, # 9.
Theorem 4.4. For every Feller MC, Appq = Apea @ Dpja-

Theorem 4.5. For every Feller MC on a Hausdorff compact space,
A7“ca 7A .

We now turn to homogeneous Markov processes with continuous time.
The Krein—Rutman theorem was formulated in [18] for semigroups of adjoint
operators. By analogy with the Basic Theorems I-III, as a corollary, we
immediately have the following assertion, which we formulate omitting details.
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Theorem 4.6 (Basic Theorem IV). For every Markov process with con-
tinuous time, there exists an invariant finitely additive measure \ € Sp,,
A\ = At)\, independent of t > 0.

For a Feller process with continuous time on a normal space, there exists
an invariant regular finitely additive measure \ € Spp,, A = A\, independent
of t > 0.

For a Feller Markov process with continuous time on a Hausdorff compact
space, there exists an invariant regular countably additive measure A\ € Sycq,
A\ = At)\, independent of t > 0.

Theorem 4.6 as a corollary to the Krein-Rutman theorem was pointed out
in the author’s preprint [34]. Note that, in the above-cited articles by other
authors, there is neither an analog nor a special case of this assertion.

5. Finitely additive Markov chains

In the previous two sections, we have considered Markov chains with tran-
sition probability p(z, E') countable with respect to the second argument. Al-
though we extended Markov operators (i.e., Markov chains) to spaces of finitely
additive measures, the transition probabilities and Markov chains themselves
remained countably additive. By the intrinsic logic of development of mathe-
matics, it would be natural to consider also finitely additive transition proba-
bilities for MC’s. At the same time, a real need arose to study finitely addi-
tive MC’s.

In 1965, the famous monograph by Dubins and Savage [10] appeared, in
which, apparently, finitely additive measures first acquired a “probabilistic”
sense and the very title “probability” In [10], finitely additive measures were
considered on a countable product of discrete spaces, playing the role of strate-
gies in the problems of game theory. The monograph [10] gave rise immediately
to a series of articles on the topic, mainly by students and followers of Dubins
and Savage (see, for example, [8,21]).

Apart from stochasticity, games also presuppose time that leads to using
the theory of stochastic processes. Therefore, it was quite natural that Ra-
makrishnan’s article [22] appeared which, in the framework of development of
the ideas by Dubins and Savage, was the first to comprise the term “finitely
additive Markov chains” already in the title. In [22], rather specific Markov
chains with finitely additive transition function were studied in the strategy
language. The phase space there is discrete and, in some assertions, countable.
Later, some more articles were published in the context of Ramakrishnan’s ap-
proach [22] including [23]. We observe that the methods of [22] and relevant
articles are rather specific and cannot be carried over mechanically to more
general Markov chains that have nothing to do with game theory.
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Now, we extend the operator approach of the previous two sections to
finitely additive MC’s. It is worth noting that even defining MC has some
problems to overcome.

Let X be an arbitrary set and let ¥ be an algebra of its subsets which
contains all singletons.

Definition 5.1. A finitely additive transition function (transition prob-
ability) p(x, E) on a measure space (X,Y) is a mapping p: X x 3 — [0,1]
satisfying the conditions

p(',E)EB(X,E), EGE,

p(z,+) € ba(X,Y), z€X;
p(r, X) =1, r e X.

Theorem 5.1. A finitely additive transition function p(x, E) defines
the two integral operators

(Tf)(x) = Tf(z) = / fWpla,dy),  feB(X,S), zeX,
(Ap)(E) = Ap(E) = / p(e, E)u(dz), p € ba(X,5), Ees

Moreover,
T: B(X,Y) = B(X,Y), A:ba(X,Y)— ba(X,Y),

T and A are linear, positive, and bounded, ||T|| = ||A|| = 1, and A is adjoint
toT, ie., T* = A.

The proof is standard and similar to that of Theorem 3.1; therefore, we
omit it.

Definition 5.2. Assume that (X, X) is endowed with a finitely additive
transition probability. We call the operators 7" and A that correspond to it by
Theorem 5.1 finitely additive Markov operators.

Suppose that a finitely additive transition function p(z, E) is not count-
ably additive. Then there exists a point zg € X such that p(zo,+) ¢ ca(X,X).
Consider the Dirac measure ;1 = 05, € ca(X,X). We have

A= [ pl.2)Bap(de) = plao, ) # alX, ),

Thus, generally speaking, the Markov operator A of a finitely additive transi-
tion function does not map countably additive measures to countably additive
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measures, i.e., ca(X,Y) is not invariant under A. The rest of the easy proper-
ties of finitely additive Markov operators are the same as the main properties
of countably additive operators. Therefore, we preserve the terminology.

In Section 3, in considering a countably additive MC, we gave its func-
tional interpretation rather than a rigorous definition. We had in mind that
there are exhaustive definitions of all notions concerning MC’s in the language
of random variables (elements) which are in a correspondence with countably
additive measures.

In the countably additive case, we have a fundamentally new situation.
No “random variables” that would recall habitual objects can be assigned
to purely finitely additive measures. At any rate, there is no such theory, and
no direct analog is possible (except for some very special cases). Consequently,
we need to give not an “interpretation” but a definition of such MC’s “from
scratch” For us, the most logical way is to take the “functional treatment”
of Section 3 as such a definition. We were not able to give this definition
before Theorem 5.1.

Definition 5.3. Let X be an arbitrary set and let X be an algebra of its
subsets which contains all singletons. Suppose also that (X, ¥) is endowed with
a finitely additive transition function p(z, E) and A: ba(X,X) — ba(X,X) is
the corresponding Markov operator.

Assume that pig € Spq and pp, = Apip—1 = A"pg, n=1,2,... . By a finitely
additive Markov chain (MC) on (X, X) we mean the iterative process {u,} =
{,un(,ug)} depending on the initial measure pg as a parameter. A finitely ad-
ditive MC is uniquely determined by p(z, F) and ug. We will often identify
an MC with the iterative process itself, disregarding the initial measure .

As in Section 3, we can consider finitely additive MC’s on topological
phase spaces (X, .A) or (X, B). If a finitely additive MC is Feller then it is not
necessarily additive. However, the following assertion holds.

Theorem 5.2. Assume given a finitely additive Feller MC on a Hausdorff
compact space (X, B), i.e., TC(X) C C(X). Then MC is countably additive
and A: rca(X, B) — rca(X, B); moreover, A is adjoint to T: C'(X) — C(X).

The proof is straightforward and therefore omitted.

We now turn to the question of invariant measures for a finitely addi-
tive MC. The corresponding operator 7" has a fixed point f(z) = 1 which is
an interior point of K2 in B(X,¥) (as for ¥ an algebra, as for ¥ a o-algebra).
If the MC is Feller then f(z) = 1 is also an interior fixed point of 7" in K©.
Hence, as in the case of countably additive MC’s, the Krein-Rutman theorem
(see [18]) immediately implies the following assertions (Basic Theorems).

Theorem 5.3. For every finitely additive MC, A = Ay, # @.

Theorem 5.4. For every Feller finitely additive MC, A, # 9.
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Theorem 5.5. For every Feller finitely additive MC on a Hausdorff
compact space, Apeq # D.

In view of Theorem 5.2, Theorem 5.5 is a simple rephrasing of Theo-
rem 4.5.

In [22], Theorem 5.3 was proven only for the special case of a discrete
phase space on using the technique of Banach limits.

In this article, we do not aim at a separate thorough study of finitely addi-
tive Markov chains. The constructions and theorems of this section themselves
are sufficient for what follows.

6. Properties of the sets of invariant measures
for the Markov operators

Let X be an arbitrary set and let ¥ be a o-algebra of its subsets which
contains all singletons. Suppose that we have a countably additive MC with
transition function p(z, E) on (X, X).

Theorem 6.1. Suppose that p € Ny, K, € ¥, and u(K,) = 1. Then,
for arbitrary numbers {e,} with 0 < e, < 1, there exist sets {K,}, K, € X,
n =1,2,..., such that K,, D K1 D Ky O ..., p(K,) = 1, and p(z, K,) >
1—ey, forevery x € K41 withn=1,2,....

Proof. Putting g9 = £1 and Ky = K, construct the following sequence of
sets forn =0,1,2,...:

Kn+1 = {SL’EKn p(xK)>1—5n}.

Obviously, K, € ¥, n=1,2,..., and Ky D K; D .... We now proceed
as follows:

1 = pu(Ky) = Au(Ky) = Xp(:z: , Ko)p(dx) /K /K /K "
< (K1) + (1= eo)pu(Ko \ K1) =1 — g9 + eopu(Ky).

Consequently, p(K7) > 1, i.e., (K1) = 1. Similarly, we have u(K,) =1,
n=1,2,.... The theorem is proven.

Theorem 6.2. Suppose that 1 € Aey, K, € ¥, and pu(K,) = 1. Then
there exists a set X € ¥ such that K C K, u(K) = 1, and p(z, K) = 1 for
every ¥ € K, i.e., K, has a stochastically closed subset K.

Proof. Putting Ky = K, construct a sequence of sets for n =0,1,2,...:
Kno1 & {2 € Ky 2 pla, Kp) = 1}.

Clearly, K, € ¥, n=1,2,..., and Ky D K1 D .... Hence there exists
alimit K =limK,=NKp, KX, KCK,,n=1,2,....
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We now prove that u(K;) = 1. Let u(K7) < 1. Then u(Kp\ K1) > 0
and p(z, Ko) < 1 for every z € Ky \ K1. Since p is countably additive and ¥
is a o-algebra, a standard argument easily yields the inequality

/ P, Ko)u(de) < p(Ko \ K1),
KO\K1

Now,

1 = u(Ko) = Ap(Ko) / (z, Ko)u )_/I{OZ/IQ_'_/KO\Kl

(Kl) (KO\Kl) (Ko) =1.

The contradiction shows that u(K7) = 1.
Similarly, we have u(K,) = 1 for n = 1,2,.... Since p is countably
additive and { K} is monotone, we have

p(K) = p(lim Ky) = lim p(KG,) = 1.

Consequently, K # &. Suppose that © € K. Then x € K, and p(z, K,,—1) = 1
for all n = 1,2,.... Since p(z,:) € ca(X,X), it follows that p(z,K) =
p(z,lim K;,) = limp(z, K,,) = 1. The theorem is proven.

We now establish some structure properties of the Markov operators
that will be important below. For brevity, we write dim A for the dimen-
sion dimlin A of the linear subspace spanned by a set A. By a basis for A we
also mean a basis consisting of elements of A in this linear subspace.

Theorem 6.3. Assume given an MC on an arbitrary (X, X). If dim A, =
n < oo then there is a basis of pairwise singular measures {1, .. ., pin} for A,.
Moreover, there exist Ki,...,K, € X such that K; N K; = &, i # j,
pi(K;) =1, and p(x, K;) = 1 for every x € K;, where i = 1,...,n.

Proof. Consider the restriction of A to ca(X,X). The operator A is linear,
positive, and isometric on K. By Birkhoff’s theorem (see [6, Chapter X VI,
Section 7, Theorem 12]), the set of all its fixed points H is a linear subspace
and a sublattice in ca(X, X), i.e., for all py, po € H, sup(p1, p2) and inf (g, p2)
are also in H. By Yudin’s theorem (see [28, p.89]), there is a basis {p1, ..., tin}
in H that consists of disjoint (and even discrete) elements. We may assume all

U1, .- ., to be positive. Normalize p1, ..., fin, choose sets K, ,..., K, € X
such that K, N K, = & for i # j and y;(K,,) = 1, and then apply Theo-
rem 6.2 to each uy,...,u,. We have a claimed collection of sets Ki,..., K,.

The theorem is proven.

Now, we need a modification of Birkhoff’s theorem mentioned above
for the case of spaces of measures.
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Theorem 6.4. The sets of fixed points of the Markov operator in ba(X, X)
or in ca(X,X) are K-spaces, i.e., conditionally complete vector lattices.

Proof. Let H be the set of all fixed points of A in M, where M stands
for ba(X,%) or ca(X,X). Clearly, H is linear. Suppose that £ ¢ HN KM
and F is bounded in H. Then E is bounded in M and hence there exists
z = supys E. Since A is positive, from z > x it follows that Az > Ax = z,
x € E. Therefore, Az > 2. Since z > 0 and A is an isometry, we have z = Az,
i.e., z € H. Obviously, z = supy E. This is enough (see [28, p.92]) for H to
be a K-space. The theorem is proven.

Theorem 6.5. Suppose that an MC is given on an arbitrary (X,3).
If dim A., = oo then there is a sequence {y,} of pairwise singular measures
in Acq. Moreover, there exists a sequence of measurable sets { K} such that
KnN Ky =9, n#m, up(Ky) =1, and p(z, K,) = 1 for every x € K,, with
n=12,....

Proof. In accordance with Theorem 6.4., the set H of all fixed points
of A in ca(X,Y) is an infinite-dimensional K-space. It is known that every
infinite-dimensional K-space has an infinite set of pairwise disjoint elements.
For pairs of measures, disjointness means singularity, which implies existence
of disjoint sets of full measure for countably additive measures. From this fact
and Theorem 6.2 the claim of the theorem follows.

We now return to the general case of Theorem 6.1. The difference between
this theorem and the special case of countably additive invariant measures is
clear. In the following theorem, we specify the properties of a sequence of
“supports” of invariant measures in the finitely additive case.

Theorem 6.6. Suppose that p € Ay, and a sequence {M,}, where

M, € ¥, My D My D ..., and limM,, = (M, = &, meets the equality
pu(My) =1 for all n € N. Then, for arbitrary numbers {e,} with 0 < &, < 1,
n = 1,2,..., there exist sets {Ky,}, K, € ¥, n = 1,2,..., such that K1 D

Ky D ..., limK, =0, u(K,) =1, p(z, K,) > 1 — &, for every x € K41 for
alln=1,2,....

Proof. Repeating the scheme of the proof of Theorem 6.1, put K1 = M;
and construct a sequence of sets

Ky dof {1,‘ € Ky :plx, Kp)>1— 6n} N Mpy1, neN

Clearly, K, € ¥, n € N, and K1 D K9 D .... Since K,, C M,, we have
limK, =NK,=2.

Making the same integral transformations as in the proof of Theorem 6.1,
we have u(K,) =1,n=1,2,.... The theorem is proven.

The conditions of Theorem 6.6 are not burdensome. If a measure A is
not countably additive then, by definition, there always exists a sequence of
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sets K1 D Ky D ..., K, — &, such that lim A(K,) > 0, i.e., the inequality
A(Ky) > p holds for some p > 0 and all n € N.
The measure p in Theorem 6.6 is automatically purely finitely additive.
It is impossible to state more, i.e., to distinguish stochastically closed sets
in Theorem 6.6 (and in Theorem 6.1) without imposing extra conditions on
the invariant measure. This is exemplified as follows.

Example 6.1. Assume that X = [0,1], ¥ = B, and the Markov chain
is as follows: from x € (0, 1], there is a transition to 22 with probability 2 and
to 0, with probability 1 — x, whereas 0 is a stationary point. Formally, this
means that p(z, F) = 20,2(F) + (1 — 2)dp(E) if z # 0 and p(0, E) = do(E).
Here we do not perform easy but rather long calculations to show that the MC
has an invariant purely finitely additive measure A “near 1) i.e., A\ satisfies

the condition )\((1 —e, 1)) =1 for every 0 < £ < 1. Moreover, any set K € ¥,

say, in (%, 1), is not stochastically closed for the chain and yet the assertion of

Theorem 6.6 holds.
In Section 7, we give a conversion of Theorem 6.6.

7. Weak limit points of Cesaro means
and invariant measures

In this section, we consider Cesaro means for Markov sequences. In the se-
quel, we will be especially interested in the limit behavior of means in the top-
ologies generated by spaces of functions in spaces of measures. All topological
spaces below are assumed normal.

We denote the Cesaro means for a measure p as follows:

1 n
)\n:)\‘,j:;ZA’“u, n e N.
k=1

Theorem 7.1. Suppose that X is normal and we have a Feller MC
p € rha(X, A), u € Sppq on (X,B). Then every t¢-limit measure of {\}
in rba(X, A) is a fixed point of A, i.e., W{ Ay} C Appe, and the set of such
measures is nonempty, i.e., W{\,} # &, and T¢-compact.

Proof. Choose p1 € Sppe. Obviously, || M| = An(X) =1, n=1,2,..., ie.,
the set {\,} is metrically bounded in rba(X, .A). Consequently, the 7¢-closure
{An} is compact in the T¢-topology (see [9, Chapter V, Item 4, Corollary 3]).
According to [17, Chapter V, Theorem 5], every subsequence \,; including A,
has a limit point n = n{A,, } such that each of its neighborhoods contains infin-
itely many elements of the subsequence. This means that, for every 7o -neigh-
borhood V'(n, f1, f2,. .., fx,€), the set {z t A, € VI, f1, f2,. ..,fk,s)} is in-
finite, i.e., there exists a subsequence {)‘mj}a )‘mj e Vin, f1, fa, -y frs8)s

i=1,2,....
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Suppose that 7 is 7¢-limit for {A,}. We proceed as follows:
1 — 1 1
AN, = — ZAku + (A — A = N\, 4+ = (A" — Apl.
n i n n

Assume that f € C(X). Then, for every £ > 0, there exists a strictly in-
creasing sequence of numbers {n;} = {n;}(f,e) such that A\,, € V(n, f,Tf,¢),

i=1,2,.... (By hypothesis, Tf € C(X).)
Furthermore,
|f(n) = f(An)| = | f(n) = Tf(n)|
< \f(77) - f()‘nz) + ‘f()‘nz) - Tf()‘ni) + ‘Tf()‘nz) - Tf(ﬁ)\

<+ |f(ny) = F(AN)

e | Fm) = FOm) — f(

+e€
1
—|

()

Ani+1u . AM]) ‘

<24 | F(AMH - Ap)

(]
<2+ M
n;

Since n; — 0o as i — 0o, we have ‘f(n)—f(An)‘ < 2e. So, by arbitrariness
of &, we infer that | f(n) — f(An)| = 0.

Thus, each f € C(X) meets the equality f(n) = f(An). The set C'(X) is
total on rba(X, A); therefore, n = An. Moreover, n € rba(X, A).

Now, prove that n € Sy, i.e., that n is normalized and positive. Consider
a To-neighborhood of n of the form V(n, f,e), where ¢ > 0 is arbitrary,
f € C(X), and f(r) = 1. Then there exists an n; such that \,, € V(n, f,¢),
ie.,

‘<f777>_ <f7)‘ni>

The equality A\,(X) =1 for all n € N implies |n(X) — 1| < ¢ for every £ > 0,
whence n(X) = 1.
Suppose that there exists £ € A such that n(E) = —r < 0. Since 7 is

= [n(X) = A, (X)| <&

regular, for every € > 0, we can find sets F = F € A and G = G € A such
that F C E C G and —r —e < n(G) < n(E) < n(F) < —r+e. Choose ¢ = 3.

Then we have

3r r
—5 < n(G) < n(F) < -3

for appropriate F' and G.
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Since X is normal and X \ G and F are its disjoint closed subspaces, it fol-
lows that, by the famous Urysohn theorem ([9, Chapter I, Item 5, Theorem 2]),
there exists f € C'(X) such that 0 < f(z) <1, f(X\G) =0, and f(F) = L.
Omitting simple estimations of integrals, we have

[(f, An) = ()] > An(F)+g > - >0

-
2
for all n € N.

Consequently, for ¢ < &, there is no n € N such that A\, € V(n, f,¢), i.e.,
the measure 7 is not 7¢-limit for {\,}. The contradiction shows that n(E) > 0
for all E € A. Thus n € S;4, and 1 € Ay, ie, WAy} C Appe. The theorem
is proven.

If n is a limit point for {A,} in 7¢ then there need not be a sequence
To-converging to 7.

If o € rea(X, B) then A\, € rca(X,B), n = 1,2,.... Generally speaking,
a Te-limit measure for such {\,} is not countably additive.

Theorem 7.2. Suppose that we have an arbitrary MC on an arbitrary
(X,%), p € ba(X,Y), and pu € Spa. Then every Tg-limit point of the se-
quence {\p} in ba(X,Y) is a fixed point of A, i.e., M{\,} C Apy, the set of
such measures is nonempty, i.e., M{\,} # &, and Tg-compact.

Proof. Since B* = ba(X,Y), we should just repeat the first part of
the proof of Theorem 7.1 replacing C' by B and rba, by ba. The fact that
the 7¢-limit measures are normed and positive is proven even easier here.
The theorem is proven.

Corollary 7.1. All the 1¢- and Tg-limit measures 1 in Theorems 7.1
and 7.2 respectively meet the conditions 0 < n and ||n|| = n(X) = 1.

If the MC on (X, B) is not Feller then all the 7p-limit measures of {\,}
are invariant but the 7¢-limit measures (there are more of them, and they
include all 7g-limit measures) need not be invariant, i.e., M{\,,} C Ay, but
m{)\n} ¢ A7"ba-

We point out that, in the following two theorems, the means are taken
for an MC having a different initial measure pu, for each n € N. This is done
for further applications rather than for the sake of generalization.

Theorem 7.3. Suppose that we have an arbitrary MC on an arbitrary
(X,%), pn € ba(X,Y), pin, € Spa, and

1 n
)\n:A‘Ti”:ﬁ;Akun, n=1,2,....

Then each Tg-limit measure of {\,} is invariant for A, i.e., M{\,} C Apq,
the set of such measures is nonempty and Tg-compact.
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Proof. We have

1 1 1
Adp == APy + S [A = Apn] = M+ —[A" M, — Ap).
n &~ n n
Now, following the scheme of the proof of Theorem 7.1, we obtain the desired.

Remark. Obviously, if n € 9(\,) then n(E) =lim A\, (E) forall E € ¥
for which lim A, (E) is defined.

Theorem 7.4. Suppose that we have a Feller MC on a topological phase
space (X, A), un € rba(X, A), tin € Sypa, and

1 n
)\n:A‘Ti”:ﬁ;Akun, n=1,2,....

Then every 7¢-limit point of {\,} is invariant for A, ie., M{A\,} C Ay,
the set of such measures is nonempty and T¢-compact.

The proof is carried out in much the same way as that of Theorem 7.3.

Corollary 7.2. Theorems 7.1-7.4 remain valid on substituting arbitrary
subsequences {\p;} for {\,}.

Indeed, it is for an arbitrary subsequence {\,} that Theorem 7.1 is
actually proven, and the proofs of the other theorems repeat its proof.

In the following theorems, X is assumed to be a normal topological space.
Recall that the C-equivalence class for p € rba(X,X) is the set R{u} = {)\ €

ba(X,X): A >0, A= u}, where ) is the regularization of ).

Theorem 7.5. Assume given a Feller MC on (X, B) and j1 = Ap € Spy.
Then 1 = Ap.

Proof. By definition, we have

F(B) = () = F(Aw) = T () = TF(7) = F(A)

for every f € C'(X). Since C'(X) is total on rba(X, .A), it follows that g = Af.
The theorem is proven.

Theorem 7.6. Assume given a Feller MC on (X, B) and pn = Ap € Sypa-
Then A(R{n}) C R{u}.

Proof. Assume that A € R{u}, i.e., f(A) = f(u) for every f € C(X).
Then f(AN) = Tf(\) = Tf(u) = f(Ap) = f(u) for [ € C(X), ie.
AN € R{u}. The theorem is proven.

Theorem 7.7. Let X satisfy the condition ca(X, B) = rca(X, B), and we
have an arbitrary MC on (X, B). If u € rca(X, B) is such that AR{u} C R{u}
then = Ap.
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Proof. Since Aca(X,B) C ca(X,B), we have Ay € ca(X,B) N R{u}.
However, R{u} contains only one countably additive measure. The theorem
is proven.

Now, we are able to give the announced conversion of Theorem 6.6. First,
we prove the following lemma.

Lemma 7.1. Assume that X is arbitrary, > is a o-algebra of subsets
of X, Kp, € ¥, K # @ forneN, K DKy D ..., and (K, = &. Then
there exists a purely finitely additive measure \ € Sy, such that \(K,)=1 for
alln € N.

Proof. Suppose that 1 € Kj. Then there exists n; > 1 such that
z1 ¢ Ky, (otherwise r1 €Ky = @). Choose 3 € Ky,. Obviously, z1 # x2.
There exists ng > n; such that zo ¢ Kp,, etc. We obtain a sequence z,, € K1,
n € N. Put My = {x1,29,23,...}, My = {x2,23,74,...}, etc. We have

Ki>oM;, KoeDMy>D..., MiDMyD..., ﬂang.

For the countable family of sets M, there exists a purely finitely addi-
tive measure A\ € Sp, such that A(M;) = AM(Mz) = --- = 1. Extend A to
the whole X by zero outside My; then A(K,) =1 for all n € N. The lemma is
proven.

Theorem 7.8. Suppose that we have an MC on an arbitrary (X,¥) and
that there exist sequences ¢, and K, such that

en >0, ¢ =0 as n — oo,

oo
K,€Y, Ky#@ for neN, K1>Ky> ..., [|K.=2,

n=1

and
plr, Kp)>1—¢, for x € Kpy1, neN

Then the MC has an invariant purely finitely additive measure p € Apg;
moreover, i(K,) =1 forn=1,2,....

Proof. Using Lemma 7.1, choose an arbitrary purely finitely additive
measure A € Sy, such that A(K,,)=1 for n € N. Then, for all n € N,

AN = /X p(z, Kn)\(dz) > / p(@, Kn)\(dz) > (1—en)\(Kns1) = 1—en.

Kn+1

Since K1 D K, for all n € N, we have ANK1) > ANK,) > (1 — &),
where 1 — £, — 1 as n — oo. Consequently, A\(K;) = 1. Similarly, we have
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AN(Kp) = 1 for n € N. Repeating the argument for the measure \; = A\,
we infer that A\ (K,) = A2A(K,) = 1 for n € N. Analogously, we conclude
that A™A(Ky) =1 for all n,m € N. Hence we have

1 n
— ZAm)\(Ki) =1 forneN
n

for every 7 € N.
Let p be a 7p-limit measure for the sequence

1 n
=Y Am

By Theorem 7.2, such a measure exists and is invariant for MC, i.e., p € Ay,.
Then the equality
lim — A™
u(E) = lim Z NE

holds for those E € ¥ for which the limit exists. Hence u(K;) = 1 for i € N.
The relations [ K; = @ imply that p is not countably additive because

1= lim pu(K;) # M( lim Ki) = u(2) = 0.
1—00 1—00

Let u = py + p2 be the decomposition of 4 into purely finitely additive
and countably additive components p; and pug. The above implies that p; # 0.
Moreover, as already noted, ;1 = Apg and g = Apsz. The countably additive
measure pg must satisfy po(K;) — 0 as i — oco. Consequently, uq(K;) — 1 as
i — 00. Since p1 > 0 and K7 D Ky D ..., we have ui(K;) =1 for all i € N.
We have thus obtained a desired purely finitely additive measure. The theorem
is proven.

8. Dimension of the set of invariant measures

Although this section is short, it contains assertions on possible dimen-
sions of sets of invariant measures for an arbitrary MC which will be important
in the sequel.

Theorem 8.1. Suppose that an MC is given on an arbitrary (X,3).
If dim A¢, = 0o then Appq # @ and dim Ay, = 00

Proof. Suppose that dim A., = oo. By Theorem 6.5, there exist a se-
quence {u,} of pairwise singular measures in A., and a sequence {K,} of
measurable sets such that K, N K,, = & for n # m and p,(K,) = 1
form=1,2,....
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Let 9t be the set of all 7p-limit measures of {u,}. Clearly, MM # &
and M C A. By Theorem 2.7, we have 9 C L{uy}, and, by Theorem 2.2,
all Banach limits in L{y,} are purely finitely additive. Therefore, A, ¢, # @.

Split {K,,} into a countable number of mutually disjoint subsequences
{Ky,, Kny, ...} to which there correspond subsequences of measures £ =
{#tny s tny, - - - }. Every 7p-limit measure p¢ for such a sequence £ belongs to 9
and ¢ (U Kni) = 1. Obviously, for different &, their 7g-limit measures y¢ are
singular. Thus, for the whole sequence {1, }, there exists a countable set {1}
of pairwise singular 7g-limit measures; moreover, ji¢z € Apf,. The set {pe} is
linearly independent and, hence, dim A, = oo. The theorem is proven.

The following assertion is a direct corollary to Theorem 8.1 but we also
call it a theorem to stress its importance in what follows.

Theorem 8.2. Assume given an MC on an arbitrary (X,%). If A C
ca(X,X) then dim A < oo.

We now formulate the converse of this theorem for n = 1.

Theorem 8.3. Assume given an MC on an arbitrary (X,X). If dimA =1,
i.e., if the MC has a unique invariant measure j in Sp,, then A C ca(X, ),
i.e., v is countably additive. Moreover, \}, — 1 in 7 for every n € Sy,.

Proof. Take n € Sp,. Let 9 be the set of all 7g-limit measures of {A\}}.
By Theorem 7.2, we have 9 # & and 9 C A. This and the hypothesis of
the theorem imply that 9 = A = {u}, i.e., {\}} has a unique 7g-limit point.

We now demonstrate that A}, — u in 7. Suppose the contrary, i.e.,
that there exist £ € %, § > 0, and {n;} such that |A},(E) — u(E)| > 6,
i = 1,2,.... Then {A\}.} has a 7p-limit point & # p. We know that all
rp-limit points of every subsequence {\;}.} are 7p-limit for {\}} itself, i.e.,
£ € M = {u}. The contradiction shows that \;} — u in 3.

Suppose now that 7 is countably additive, i.e., n € S.,. Since all \;},
n =1,2,..., are countably additive, by the Nikodym theorem ([9, Chapter III,
Item 7, Corollary 4]), x is countably additive too. The theorem is proven.

In Section 12 (in the second part of the article), we will prove that the con-
dition A C ca(X,Y) is equivalent to the well-known Doob-Doeblin Condition.

3. MARKOV CHAINS
ON THE GAMMA-COMPACTIFICATION
OF A MEASURE SPACE

9. Gamma-compactification of a measure space

In the study of Markov chains, it is necessary to consider trajectories
tending to the “boundary” of the phase space (X,¥). Since X need not
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have a “natural” boundary as, for example, in the case of the real line, we
would like to close X somehow, or, better, to embed it into a compact space.
In such a compactification, it is possible to fix the (adjoined) points to which
the trajectories of the Markov chains converge. Explicit procedures of such
extensions of the phase space for various stochastic processes were developed by
many authors. In [11,25], some stochastic processes are extended to the Stone—
Cech compactification X of the initial topological phase space X, and, in [19],
its one-point compactification is considered. A special type of extension of
the phase space is suggested in [20] and developed in [7] for chains irreducible
in the sense of Harris.

The instrument of compactifications of a topological space, suitable for
these purposes, is well developed in general topology. All compactifications b.X
considered by topologists are between the minimal Alexandrov one-point com-
pactification X and mazimal Stone—Cech compactification SX. Maximality
of SX means that X is maximal among the compactifications bX of X for
which X is homeomorphically embeddable into b.X. Topologists do not consider
nonhomeomorphic embeddings of X into compact spaces; therefore, traditional
“users” of the theory also never involve such compactifications. However, there
are other compactifications of the initial space which we will just have to deal
with because we also consider nontopological X’s.

As a particular desired extension of (X, X), we take the space of maximal
ideals of the Banach algebra B(X,Y). Unfortunately, this space was not
studied deeply enough in Gel’fand’s theory of Banach algebras (rings), which
gave rise to the author’s research on the topic (see [31,32,34]). In order not to
complicate considering the ergodic theorems in the article, in this section, we
briefly describe some features of the construction and only point out the topic
of the author’s research, which is unavoidable in what follows.

Definition 9.1. Assume given a measure space (X, ) whose algebra
contains all singletons. Define the gamma-compactification (vy-compactifica-
tion) of (X,X) to be the set 7, X = vX of all maximal ideals of the Banach
algebra B(X,Y) with the Tychonoff topology, or equivalently, the set of all
multiplicative functionals in B*(X,Y) in the *-weak topology. We denote
the topology on vX by 7, = 7yx.

We observe that, for an infinite nondiscrete topological space X, v.X
is strictly greater than the compactification X, called maximal in general
topology. However, the extension vX can be described using homeomor-
phic embeddings even for nontopological X’s (see [26]). To this end, en-
dow X with the discrete topology 79. Then consider the Wallman—Shanin
compactification wy, (X, 79) of (X, 79) (see [4]) generated by the class ¥, which
is a lattice of closed sets in (X,7p). It can be proven that wy (X, 7) <
B(X,7p) and the embedding (X, 79) — wy, (X, 79) is homeomorphic. Moreover,
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B(X,Y) is isometrically isomorphic to C'(wy, (X, 7)) and B*(z,X) = ba(X, L),
to C*(wy(X,79)) = rca(wy(X,79), Bw), where By, is the Borel c-algebra
in wy, (X, 79). Thus the Wallman—Shanin compactification w,, (X, 79) is the de-
sired compactification v.X.

The Wallman compactification wX (in its initial definition) for per-
fectly normal spaces X was used by A.D. Alexandrov in [1] to extend regular
finitely additive measures on (X, .A) to regular countably additive measures
on (wX, By).

In the general case, in defining vX as the Wallman—-Shanin compactifi-
cation wy, (X, 79), the initial topology in X (X = B) or even the structure of
Y is “hidden” far behind the “intermediate” discrete topology 7. This makes
the topological approach uncomfortable for our purposes. Therefore, we use
the possibility of constructing the compact extension v.X in the framework of
Gel’fand’s theory of Banach algebras.

The space v, X was applied to the study of finitely additive measures in
Yosida and Hewitt’s article [29] (whose results we constantly use).

Let (X, X) be a measure space and let v, X = vX be its gamma-compact-
ification. First, we give a minimal necessary information on the construction
of vX, in which we are guided by [9, Chapter IV, Item 9], where the isometric
isomorphism r: B(X,Y) — C(vX) is accompanied by two natural mappings.

The first mapping is a dense injective embedding s: X — X that can be
defined in various models. It is convenient to represent yX as the space of all
multiplicative functionals in B*(X,Y) = ba(X,Y). This space is known to be
in a one-to-one correspondence with the class of all two-dimensional measures
in ba(X,Y), one part of which, M, consists of countably additive measures
and the remainder, My, of purely finitely additive measures. The measures of
M are Dirac measures 0, with singleton atoms at points x € X. The measures
of Ms are not like these and are degenerate at no point in X. In this repre-
sentation, to every point x € X, the mapping s: X — vX ~ M = M; U M,
assigns injectively the Dirac measure 0, € M; degenerate at x, i.e., s(z) =
dz € ba(X,Y). Moreover, s(X) = M; C M ~ vX. In the *-weak topology of
B*(X,¥) = ba(X,X) (i.e., in the 7,-topology of vX), M is dense in M, i.e.,
s(X)=M; =M ~~vX.

We often identify the points s(z) and z for x € X. By s(E) we mean
the image of £ € ¥ under the pointwise mapping s. If X is a discrete topo-
logical space, i.e., all singletons in X are clopen (in this case 7x = Bx = 2X)
then s is continuous and yX=£X. If X is a nondiscrete topological space
and ¥ = B then s: X — X is discontinuous and X is strictly greater
than fX.

Recall that the isometry r: B(X,X) — C(yX) is also an algebraic iso-

morphism, i.e., r(f1 + f2) = r(f1) + r(f2) and r(f1f2) = r(f1)r(f2). In par-
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ticular, r(f?) = [r(f)]2. Suppose that £ € ¥ and x, is the characteristic

function of E. Then r([y,]?) = [T(XE)]2 = r(xy). Hence r(x,) may take
only two values 0 and 1, i.e., r(x,) € C(yX) is also the characteristic func-
tion of a set By C vX, r(x,) = Xp, - The function Xp, can be continuous
only if F; is clopen in yX. Therefore, r generates the second mapping ¢ from
sets I/ € ¥ in X to the class of clopen sets in N, x; furthermore, r(x,) = Xu(B)
for all £ € X.

In [9, Chapter IV, Item 9, Lemma 10], it is proven that ¢ is an algebraic
isomorphism from the o-algebra (or algebra) ¥ onto the whole class N, x,
which turns out to be an algebra in vX and, moreover, a base of the topology 7
in yX. Thus the gamma-compactification (vX,7,) is a totally disconnected
space.

Definition 9.2 [27]. Let (X, 7) be a topological space. Define the class
of Z-sets as follows:

Z={ZcX:Z=f"10) for some f € C(X)}.

We call the algebra Az and o-algebra Bz = Bz(X) generated by Z the Baire
algebra and o-algebra and refer to sets of By as Baire sets.

For metric and some other spaces, the Baire o-algebra Bz coincides with
the Borel o-algebra B. In the general case, By C B, and the inclusion here
may be strict. It is known (see [16, Chapter X, Section 51]) that, on a Haus-
dorff compact totally disconnected space, the Baire o-algebra By is generated
by the algebra N of clopen sets, i.e., Bz = o(N). In particular, in our case,
Bz(vX) = 0(Nyx). Except for trivial cases, in such spaces, the Baire o-alge-
bra is strictly less than the Borel algebra. Note that, generally speaking, NV, x
is not a o-algebra even if ¥ is a o-algebra.

For dual spaces of functions, we have the isomorphisms

B*(X,%) = ba(X,%), C*(yX)=rca(yX,Byx).

Adjoint to the isomorphism r: B(X,¥X) — C(yX) is the isomorphism
r*: C*(yX) — B*(X,Y), ie, r*: rea(vX,Byx) — ba(X,X). Consequently,
the isomorphism [r*]~! gives unique extensions of finitely additive measures
1 € ba(X,Y) from (X, ¥) to regular countably additive measures i = [r*] ' €
rea(yX, Byx) on (yX,Byx). In [9], it was proven that a(E) = u(t™1(E))
for E € N,x and ji(tG) = pu(G) for G € X. There exists a unique extension
of the measure /i, already defined on N, x, to a regular countably additive
measure on the Baire o-algebra Bz and the Borel o-algebra B, x.

Below, we use this information without further references.

New problems of v-compactification arise in attempts to describe the ex-
crescence X \ X and understand how finitely additive measures extend to reg-
ular countably additive measures on (v.X, B,x) exactly.
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The properties of measures extended to the Stone-Cech compactifica-
tion SX, under various conditions, were studied, for example, in [26,27].
The excrescence $X \ X is studied in many topological articles. The author
solved these problems for X in [31,32,34]. We observe that the situation
with vX is essentially different from the case of FX. We will make the rele-
vant references to the above-mentioned articles directly in the sequel.

10. The construction of the Feller extension
of an arbitrary Markov chain
to the gamma-compactification of the phase space

Let X be a set and let ¥ be a o-algebra of its subsets which contains all
singletons.

Definition 10.1. Suppose that we have a countably additive MC on

(X,X) with operators T and A and transition function p(z, F). Define two

operators T, &t =1 and A, def [r*]71 Ar*, which, by construction, act

as follows: Ty: C(vX) — C(vX) and A,: rca(X,By) — rca(X,By), where
B, = B,x. We call Ty and A, the y-operators (or the operators of the v-MC,
which is not defined yet).

The following properties of T, and A, are immediate from the definition
and the fact that r is an isometry. For convenient references, we gather them:

Theorem 10.1. For every countably additive MC, the operators T,
and A, are linear, bounded, positive, A is isometric on the cone of positive
elements, ||T,|| = [[A,[| = 1, and T = A,.

Thus, T, and A, have all the basic properties of Markov operators. It re-
mains to find their integral representations.

Theorem 10.2. For every countably additive MC, there exists a function
q: vX x By — [0, 1] such that

q(z,+) € rea(vX,By), = €vX;
q(- E) € B(yX,By), E € Bz(yX);
q(+, E) € C(vX), E € Nyx;
q(z,7X) =1, z €7X,
and T, and A, are integrally representable via the kernel q(z, E):

(T, f) (@) = T, f () = / f@ale.dy),  feCHX), 7 erX:

v X

(o) (B) = AopB) = [ glo Pyulde). € rea(rX,8.), F € B,
Y
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Proof. By Bartle and Dunford’s theorem (see [9, Chapter VI, Item 7,
Theorem 1]) on the general form of a bounded linear operator in the space
of continuous functions on a Hausdorff compact set, there exists a mapping ¢
such that

T: 71X = C*(7X) = rea(7X, B,);
T,f(z) = (f,q(z)), [feC(HX), veX;
|Ty|| = sup |lg(=)]];
reyX

moreover, ¢(+) is continuous in the topology 7¢ of rca(vX, B,).
So, at every x € vX, q(x) is a regular countably additive measure on B.,
which we denote by ¢(z, ) € rca(yX, By). We have

7, 4(e) = (o)) = [ fw)aledy)
v X

Assume that f = x,, where x, is the characteristic function of a set F' €
N, x. Clearly, x,, € C(7X) and x, is in the domain of T’,. Since T, is positive,
it follows that Ty x,(z) = ¢(x, E) > 0 for all z € X and E € N, x.

Suppose that ¢(z, F) = —a < 0 for some € vX and E € B,. By reg-
ularity of the measure n(-) = q(z, ), for every ¢ > 0, there exist F = F C F

and G = G D FE such that Var(n,G \ E) < ¢, Var(n,E \ F) < ¢, and
Var(n, G\ F) < 2¢. From this it is easy to see that —a—e < n(G) < —a+e¢ and
—a — e < n(F) < —a+e¢. The algebra M, x is a base of topology in vX, and
the set F = F C vX is compact. Consequently, there exists U & N:YX such
that ' C U C G. As was proven above, U € N, x satisfies n(U) = ¢(z,U) > 0.
Then it is easy to check that Var(n, U\ F') > a—¢ and Var(n,G\U) > a —«¢,
whence Var(n,G \ F) > 2a — 2¢. Taking, for instance, ¢ = ¢, we arrive at
a contradiction to the inequality Var(n,G \ F) < 2e. Therefore, ¢(z, E) > 0
for all € vX and E € B,.

Since r sends the function x, € B(X,X) to the function x_, € C(yX),
by definition and the properties of 75, we obtain Tyx y = X,x, whence
q(z,vX) = 1.

Suppose that E € N’YX’ i.e., that E is clopen. Then x, € C(yX),
and, by construction, Tx,(+) = ¢q(+, E) € C(vX), i.e., ¢(+, F) is a continuous
function.

Since the algebra M,x generates the o-algebra Bz(vX) of Baire sub-
sets in 7X, a result by Foguel (see [13]) implies that, for every Baire set
E € Bz(vX), q(+, E) is a Baire function as well, i.e. ¢(-, E) € B(yX, Bz(7X)).
All Baire functions are Borel; hence ¢(-, F) € B(vX, B,).
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By another Bartle and Dunford’s theorem (see [9, Chapter VI, Item 7,
Theorem 2]) on the general type of integral operators, the adjoint operator A,
to T, also has an integral representation by means of the kernel ¢(z, E):

A (E) :/ q(x, B)p(dx) for all p € rca(vX,B,) and E € B,.
vX

The theorem is proven.

So, the integral kernel ¢(z, E') in Theorem 10.2 satisfies all basic proper-
ties of a transition function (probability) of a Markov chain, and 7, and A,
are Markov operators of the chain. Clearly, the kernel ¢(x, E') is unique for
this MC.

Definition 10.2. Given a countably additive MC on (X, X), we call
the corresponding MC on (v.X, B,) with transition function ¢(x, £') and Markov
operators T%, and A, of Theorem 10.2 the v-MC or the Feller gamma-extension
of the MC to the gamma-compactification.

Theorem 10.3. Fach countably additive MC on (X,Y) has a unique
Feller countably additive extension to (yX, B,). Moreover, there is a one-to-
one correspondence between countably additive MC’s on (X,X) and a class
of countably additive Feller MC’s on (vX,By). Treating MC’s as Markov
operators, this correspondence is an isometric isomorphism between the classes
of operators.

The claim of Theorem 10.3 is nothing but a reformulation of the above
properties of T = r_lTvr, A= r*A,y[r*]_l, r, and [r*]71.

Denote by P, the class of all countably additive MC’s on the initial phase
space (X, ¥).

We now look at our construction from a different viewpoint. Let (75X, 7y)
be the gamma-compactification of the initial measure (generally speaking,
nontopological) space (X, ¥). The compact space (75X, 7,,) can be considered
independently of whether we have an MC on (X, X) or not.

On (v, X, By), consider the class yP of all countably additive Feller MC
with countably additive transition functions ¢(x, E') and corresponding Markov
operators

Ty: C(vX) = C(vX), Ay:rca(vX,B,) = rca(vX, By).

Theorem 10.3 establishes an isomorphism between P., and a part of yP.
There arises a natural question: What part of 4P corresponds to P.,. Does
the whole P happen to be isomorphic with P.,? The answer to this is in
the negative.

To find this out, it is time to recall the finitely additive MC’s on (X, X)
which have been considered in Section 5. As before, by a finitely additive
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MC on (X,¥), we mean an MC with finitely additive transition function,
i.e., with a function p(x, F') satisfying the condition p(z,+) € ba(X, X)) for all
x € X. Denote by Pp, the class of all finitely additive MC’s on the initial
phase space (X, Y).

We now make a remark. Obviously, P., C Ppy. Since, for every z € X,
the transition function (measure) splits into the sum p(z, -) = p1(x, -) +p2(x, -)
of its countably additive and purely finitely additive components, we can say
that Py, splits into a sum of the classes P, and Ppr,. We will not specify what
was said in the previous sentence since we are not going to use any specific
formalization of such a decomposition (which is not an easy matter).

Suppose that we have a finitely additive MC on (X, X) with operators
T and A and finitely additive transition function p(z, F'). As for a countably
additive MC in Definition 10.1, define two v-operators: T, = rTr~1 and
A, = [r*]71Ar*. These operators act as follows:

Ty: C(vX) = C(vX), Ay:rca(vX,By) = rea(vX,By).

It is easy to see that Theorem 10.1 holds for a finitely additive MC.
The operators T, and A, are linear, bounded, positive, A, is an isometry
in the cone, [|T,|| = [|4,|| =1, and T = A,.

Theorem 10.2 is based on the Bartle-Dunford theorems on the general
form of an arbitrary bounded linear operator in the space of continuous func-
tions on a compact space. Repeating the proof of Theorem 10.2 literally, we
obtain the following assertion.

Theorem 10.4. For every finitely additive MC on (X,X), there exists
a function q: vX x B, — [0, 1] meeting all assertions of Theorem 10.2. More-
over, the operators T, and A, are integrally representable via the kernel ¢(z, E)
by means of the integral formulas of Theorem 10.2.

As in Definition 10.2, for a finitely additive MC on (X, ), we call the MC
on (yX,B,) corresponding to it by Theorem 10.4 the y-MC or the Feller
v-extension of the initial MC to (vX, By).

In the same way, we obtain an analog to Theorem 10.3.

Theorem 10.5. Fach finitely additive MC on (X, X) has a unique Feller
countably additive extension to (vX,B,). In addition, there are a one-to-one
correspondence between all finitely additive MC’s and a class of all count-
ably additive Feller MC’s on (vX, By) and an isometric isomorphism between
the corresponding classes of operators.

Remark. We have not combined the pairs of theorems one of which
is a generalization of the other deliberately, respectful to the psychologically
deeply rooted tradition to consider the countably additive probability theory
separately from the finitely additive version. Now it transpires that there is no
harm in such unification, at least, for the functional theory of Markov chains.
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Thus, there are enough different Feller MC’s on (75, X, B,) in yP for a one-
to-one correspondence with all finitely additive MC’s in Py,. We are left with
proving that this exhausts yP.

Theorem 10.6. Fach countably additive Feller MC in P defined on
(75X, By) is the Feller v-extension of a finitely additive MC in Py, defined
n (X,Y).
Proof. Let a Feller MC on (v, X, By) have transition function ¢(z, E)) and
Markov operators T and A,. Put T =r~1Tr and A = r*A,[r*]7L.
It suffices to prove that there exists a function p: X x X — [0, 1] for which

p(z,+) € ba(X,¥), =€ X;

p('aE) € B(X,E), IONS 2;
p(zr, X) =1, x € X,

the operators 7" and A are such that
T: B(X,Y) —» B(X,Y), A:ba(X,%) = ba(X,%), TF=A

and are integrally representable via the kernel p(x, E):

(Tf)(x) /f ple.dy), feB(X,5), ze X

(Ap)(E) = Au(E) = /X p(e, E)u(dz), 1€ ba(X,S), E€ 5.

We now prove this. Clearly, by construction, 7" and A act in the above-
indicated spaces. Moreover, they are positive, and A is an isometry on the cone.

For every E € X, we have T'x, € B(X,X). Put p(z, E) dof Txy(x). Then
p(+, E) € B(X,X) and p(z, E) > 0 for all z € X and E € ¥. By the definition
of adjoint operator, every e ba(X Y) and f € B(X,Y) satisfy the equality
(fs Ap) = (u,Tf), ie, [ f(2)(Ap)(dx) = [(Tf)(x)u(dr). Hence, putting
[ =X, we infer that

(An(E) = [ xele)An) (o) = [ (@)t = [ ol E)a(d).

Thus we have an integral representation for A.

Let 4 = J, be the Dirac measure at z € X. The equalities ¢,(X) =
|0-]| = 1 and the fact that A is an isometry imply that 1 = (A46,)(X) =
[ p(z, X)é,(dz) = p(z,X) for all z € X. Moreover, since &, € ca(X ¥) C
ba(X,X) and A: ba(X, %) — ba(X,Y), it follows that Ad, = [ p(x,-)d,(dzx) =
p(z,+) € ba(X,X), i.e., p(x,-) is finitely additive with respect to the second
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argument. Hence, in particular, for all £ € ¥ and x € X, we obtain 0 <
p(x, E) <p(z,X)=1.

Now, we can integrate with respect to the measure p(z,-) for an arbi-
trary x E X Suppose that f E B(X, Z) and p = 6,. Then Tf(z) =
[(Tf)(x) =[f(z = [ f(x)p(z,dz). The theorem is proven.

Obv1ously, Theorem 10.6 determlnes a ﬁn1tely additive MC on (X, X) with
finitely additive transition function p(x, ') and the corresponding operators T
and A. The construction of 7" and A by means of the isometric isomorphisms r
and r* guarantees uniqueness of their definition on using the operators of
the class 7P of Feller countably additive MC’s on (v, X, By). Thus, Theo-
rem 10.6 is “converse” to Theorem 10.5. Combining the two assertions, we
arrive at the following final statement.

Theorem 10.7. Let (X,X) be a measure space. There is a one-to-one
correspondence between all finitely additive MC’s in the class Py, on (X,X)
and all countably additive Feller MC’s in the class vP on (75X, By). Moreover,
there exists an isometric algebraic isomorphism between all Markov operators
of finitely additive MC’s on (X,X) and all Markov operators of countably
additive Feller MC’s on (75X, By).

This assertion determines a proper place of the finitely additive Markov
chains which took their origin in game theory, and, hopefully, will end disputes
on what purpose the finitely additive Markov chains are evoked for.

It is easy to find explicit relations between the transition functions of
the initial MC and -MC isomorphic to it. The results and construction of
Sections 9,10 immediately imply the following

Theorem 10.8. The transition functions p(z, F) of the initial finitely
additive MC on (X,Y) and ¢(z,G) of the countably additive Feller v-MC
on (ysX, By) are related as follows:

(1) p(z, E) = q(s(z),t(F)), r€X, EeX;

2) q(zG) =p(s7'(2),t7(Q)), z€s(X), GeNyx;
(3) plz,s) =r*[q(s(z),-)], z € X;

4) p(E)=r"q(-tE))], E € 3;

5) q(zG) =r[p(-t1(G))](2), zevX, G e Nyx;
(6) a(=G)=r"""p(s7(2),)](GQ), z€s(X), GeByx

If the initial MC is countably additive then the formulas of the theorem
hold too.
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Using the above techniques, in the second part of this article we will prove

ergodic theorems for Markov chains in which we connect asymptotic behavior
of the chains with the properties of invariant finitely additive measures.
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